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B Sc-III Sem-V Paper-XV Sub-Physics 

   Classical Mechanics 
 

1 Mechanics Of a Particle 

1.1 Conservation theorem for linear momentum of a particle. 

Statement:- If the sum of external forces acting on a particle is zero, then the linear momentum of 

the particle is conserved. 

Proof:- Consider a particle acted upon by a force F


. Then according to Newton’s second law of motion, 

we have  

F
dt

Pd 


  where P


 is the linear momentum of the particle. 

Thus if the external force F


 = 0 then 0
dt

Pd


 or P


 = constant of time. In other word, if the sum of 

external forces acting on the particle is zero, then the linear momentum of the particle is conserved. 

 

1.2 Conservation theorem for angular momentum of a particle. 

Statement:- If the total moment of the forces or torque acting on a particle is zero, then the angular 

momentum of the particle is conserved. 

Proof:- If P


 is the linear momentum of the particle and r


is the radius vector from the arbitrary origin 

‘O’ then the angular momentum of the particle about the origin is 

 vmrPrL


  

where m is the mass and v


 is the velocity of the particle. 

Differentiating the above equation with respect to time, we get 
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where F


 is the total force acting on the particle. 

or N
dt

Ld 


  

where FrN


  is the moment of the force or torque acting on the particle. 

Thus, if 0N


 then 0
dt

Ld


 or L


= constant of time. 

It implies that, if the moment of the total force or torque acting on a particle is zero, then the angular 

momentum of the system is conserved. Hence the proof. 

 

1.3 Conservation theorem for total energy of a particle. 

Statement:- If the forces acting on a particle are conservative then the total energy of the particle is 

conserved. 

Proof:- Suppose a particle is acted under action of a conservative force F


 and is moved from position 1 

to position 2. Then the work done under this process is 
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Now consider the term 
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Using it in the above equation, we get 
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Substituting it in equation (2), we get 
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where T1 and T2 represent the initial and final kinetic energies of the particle respectively. 

If the force F


 acting on the particle is conservative then 

 VF 


        

where V is the potential energy of the particle. 

The work done in displacing the system from position 1 to position 2 under action of this force is given 

by 
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   (4) 

where V1 and V2 represent the initial and final potential energies of the particle respectively. 

Equating equations (3) and (4), we get 

 1212 VVTT   

or 1122 VTVT   

or VT  = constant 

Thus, if the forces acting on a particle are conservative then the total energy of the particle is conserved. 

Hence the proof. 

2 MECHANICS OF A SYSTEM OF PARTICLES 

2.1 Centre of mass of a system of particles: 

If a system consists of n number of particles of masses m1, m2, ………, mn whose position vectors from 

any arbitrary origin ‘O’ are nrrr


...,,........., 21  respectively, then the centre of mass of the system defined 

as the geometrical point whose position vector is given by 
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where 
i

imM is the total mass of the system. 

2.2 Conservation theorem for linear momentum of a system of particles. 

Statement:- If the sum of external forces acting on a system of particles is zero, then the total linear 

momentum of the system is conserved. 

Proof:- Consider a system of finite number of particles acted upon by various forces. Any given particle 

of the system will experience two types of forces:1) the external force due to the agent outside the system 
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and 2) internal forces due to the other particles of the system. Thus the total force 
iF


 acting on the ith 

particle can be written as 

  

j

ji
e

ii FFF


     (1) 

where 
e

iF


 stands for an external force and jiF


 is the internal force on the ith particle due to the jth particle. 

Obviously, 0iiF


. 

The equation for motion for the ith particle can be written as 
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Summing over all the particles, we get 
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Now e

i

e
i FF


  is simply the total external force and 0

,


ji

jiF


 since the law of action and reaction 

states that each pair ijji FF


  equal to zero. 

Thus equation (2) becomes  

 e

i

i FP
dt

d 
  or eF

dt

Pd 


  

where PP

i

i


  is the total linear momentum of the system. 

If 0eF


then 0
dt

Pd


 or constantP


with time.  

Thus, if the sum of external forces acting on a system of particles is zero, then the total linear momentum 

of the system is conserved. Hence the proof. 

2.3 Conservation theorem for angular momentum of a system of particles. 

Statement:- If the total moment of the external forces acting on a system of particles is zero, then 

the total angular momentum of the system is conserved. 

Proof:- Consider a system of finite number of particles. The angular momentum of ith particle of the 

system about any origin ‘O’ is given by 

 iii PrL


       (1) 

where ir


 is the radius vector and iP


 is the linear momentum of the particle. Further, iii vmP


  with iv


is 

the velocity and im  is the mass of the ith particle. Using this equation (1) becomes 

 iiii vmrL


  

Differentiating it with respect to time, we get 
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  is the total force acting on the ith particle. 

or i
i N

dt

Ld 


  

where iii FrN


  is the moment of total force or total torque acting on the ith particle. 

Summing over all particles of the system, we get 
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where 
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iLL


 is the total angular momentum of the system. 

Now consider,  
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where 
e

iF


 stands for an external force on ith particle and jiF


 is the internal force on ith particle due to jth 

particle. Thus,  
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The second term on RHS of this equation vanishes according to the law of action and reaction as the 

internal forces occur in equal and opposite pairs. Therefore, we have 
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where e

i

e
i NN


  is the total moment of the external force or total external torque on the system. 

Substituting it in equation (2), we get 

  eN
dt

Ld 


  

Thus, if 0eN


 then 0
dt

Ld


 or L


= constant with time. 

It implies that, if the total moment of the external forces acting on a system of particles is zero, then the 

total angular momentum of the system is conserved. Hence the proof. 

2.4 Conservation theorem for total energy of a system of particles. 

Statement:- If the forces acting on a system of particles are conservative then the total energy of the 

system is conserved. 

Proof:- Consider a system of finite number of particles acted upon by conservative forces. Let Wi12 be 

the work done in displacing ith particle from position 1 to position 2 then  
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where iF


 is the total force acting on ith particle given by 
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 stands for an external force and jiF


 is the internal force on the ith particle due to the jth 

particle. Therefore, 
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Taking summation over all the particles, we get 
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As usual the last term on RHS vanishes because of the law of action and reaction. Therefore,
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Substituting it in equation (2), we get 
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or 1212 TTW        (3) 

where T1 and T2 represent the initial and final kinetic energies of the system when it is displaced from 

position 1 to poison 2 and W12 represents the net work done in this process. 

If the external force 
e

iF


 acting on ith particle is conservative then 

 i
e

i VF 


      (4) 

where Vi is the potential energy of ith particle. 

The work done in displacing the system from position 1 to position 2 under action of this force is given 

by 
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The last term vanishes as usual. Therefore, 
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Using equations (4), we get 
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where V1 and V2 represent the initial and final potential energies of the system when it is displaced from 

position 1 to poison 2. 

Equating equations (3) and (5), we get 

 1212 VVTT   

or 1122 VTVT   

or VT  = constant 

Thus, if the forces acting on a system of particles are conservative then the total energy of the system is 

conserved. Hence the proof. 

3 Generalized Coordinates 

 The set of independent coordinates sufficient in numbers to specify the given systems 

configuration is called generalized coordinates and are denoted by q1. q2, ………qk, ……..qf, where f is the 

total number of generalized coordinates called as the degree of freedom of the system. 

  Consider a system of n particles. There exists 3n number of independent coordinates. Suppose the 

motion of the system is restricted by holonomic constraints represented by l equations of the form 

 f1(x1, y1, z1, x2, y2, z2,…………, xn, yn, zn) = 0 

 f2(x1, y1, z1, x2, y2, z2,…………, xn, yn, zn) = 0 

 . 

. 

fl(x1, y1, z1, x2, y2, z2,…………, xn, yn, zn) = 0 

these l equations may be used to eliminate l of the 3n coordinates and now there are 

(3n – l) = f (say) independent coordinates or degrees of freedom.  

Thus there exists   

(3n – l) = f  generalized coordinates.  

These generalized coordinates must satisfy the following conditions. 

They must specify the configuration of the system. 

They must be independent of each other. 

They must simplify mathematical calculations without affecting informative solution. 

4 Constraints: 

 Geometrical restrictions on the motion of a particle or a system of particles are known as 

constraints. 

 In practice the motion of a particle or a system of particles is generally restricted in some way. 

Some examples of these restrictions are: 

The motion of rigid bodies is always such that the distance between any two particles remains unchanged. 

The motion of a point mass of a simple pendulum is restricted since the point mass always remains at a 

constant distance from the point of suspension. 

The motion of the gas molecules within a container is restricted by the wall of the vessel since gas 

molecules can move only inside the container. 
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4.1 Holonomic and Non-holonomic constraints: 

 Constraints may be classified into holonomic and non-holonomic as follows. 

 Let nrrrr


............., ,3,21  be the position coordinates of a system and t denotes the time. If the 

conditions of all the constraints are expressed as equations of the form 

  f( nrrrr


............., ,3,21 ) = 0 

then the constraints are said to be holonomic. If the conditions of the constraints are not so expressed then 

they are called non-holonomic constraints. 

Examples of holonomic constraints: 

The constraints involved in the motion of a rigid bodies in which the distance between any two particles 

is always fixed are holonomic, since the condition of constraints are expressed as 
2

)( ijji crr 


  or 0)(
2
 ijji crr


 

The constraints involved in the motion of the point mass of a simple pendulum are holonomic. In this 

case the point mass remains at a constant distance l from the point of suspension. If a


 is the position 

vector of the point of suspension and r


 is the position vector of the point mass then the condition of the 

constraint can be expressed as 
22)( lar 


 or 0)( 22  lar


 

 

Examples of non-holonomic constraints: 

The constraints involved in the motion a particle placed on the surface of a solid sphere are non-

holonomic. The condition of constraints in this case may be expressed as 

022  ar  

Where a is the radius of the sphere and r is the distance of the particle from the centre of the sphere. 

The constraints involved in the motion of the molecules of a gas contained in a container are non-

holonomic. 

The constraints are further classified into Scleronomic and Rheonomic. If the constraints are independent 

of time, they are termed as Scleronomic and if they are time-dependent then they are Rheonomic. 

5 Principle of virtual work 

 Imagine two possible configurations of a system of particle at any time.  If the system goes from 

one configuration to the other, each particle of the system is imagined to be displaced by an infinitesimal 

vector ir


  from the old to new position. The displacement ir


  is called a virtual displacement which is 

different from actual displacement ird


. Under this change in configuration the system remains in 

equilibrium indicating that the resultant force acting on each particle of the system is zero, i.e., iF


 = 0, 

where iF


 is the force acting on ith particle. Clearly, the virtual work given by ii rF

  must be zero. 

Thus,   0 ii rF

  

Summing over all particles, we get 

 0
i

ii rF

       (1) 

If the constraints are present, then we write 

 i
a

ii fFF


  

where 
a

iF


 is the actual force and if


 is the force of constraints acting on the ith particle. Putting it in 

equation (1), we get 
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or 0 
i

ii
i

i
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     (2) 

Now restricting ourselves to the system where the virtual work done by the forces of constraints is zero, 

i.e., 0
i

ii rf

  then equation (2) becomes 
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       (3) 

This is the equation for equilibrium of a system. It states that, a system of particles is in equilibrium only 

if the total virtual work of the actual applied forces is zero. This is known as principle of virtual work. 

6 D’Alembert’s principle using virtual work: 

 D’Alembert’s principle is based on the principle of virtual work. Consider a system of finite 

number of particles. According to Newton’s second law of motion, the force on ith particle is defined as 

 i
i

i P
dt

Pd
F





  

where iP


 is the momentum of the ith particle. Thus we have 

 0 ii PF


      (1) 

According to this equation, a moving system of particles can be considered as in equilibrium under the 

force  ii PF


  where iP


  is known as reversed effective force on the ith particle. 

According to the principle of virtual work, we have 

 0
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Replacing iF


 by  ii PF


 , we get 

   0
i

iii rPF


      (2) 

If the forces of constraints are present, then we write 
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where 
a

iF


 is the actual force and if


 is the force of constraints acting on the ith particle. Putting it in 

equation (2), we get 
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By restricting to the systems where the virtual work done by the forces of constraints vanishes, we get 

   0
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a

i rPF


      (4) 

which is called D’Alembert’s principle. 

7 Lagrange’s equation from D’Alembert’s principle: 

The coordinate transformation equations are given by 

 ),.....,,.........,( 21 tqqqrr nii


  

where nqqq .....,,........., 21 are the generalized coordinates. Differentiating this with respect to time, we 

get 
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where iv


 is the velocity of the ith particle. Similarly the virtual displacement ir


  can be connected with 

iq  such as 
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The last term in this equation is zero, since in virtual displacement only coordinate displacement is 

considered and not that of time. Therefore,  
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D’Alembert’s principle is given by 
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Using equation (2) in it, we get 
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where Qj are called components of the generalized force. Thus the equation (4) becomes 
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Further we obtain, 
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One can prove the identities 
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Substituting it in equation (6), we have 
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where 
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iivm
2

2

1
= T is the total kinetic energy of the system. 

Rearranging equation (9), we write 
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Case I :- Conservative system  

For conservative system, the forces iF


 are derivable from potential function V. Thus, 
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Substituting it in equation (10), we obtain 
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since V is not a function of jq . Therefore, 
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where VTL   is called Lagrangian for the conservative system. Taking summation over j from 1 to n, 
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This equation is known as the Lagrangian equation of motion for the conservative system. 

Case II :- Non-conservative system  

If the system is non-conservative and if the potentials are velocity dependent called generalized 

potentials, then the equation (9) can be expressed as 
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With again UTL  , where  jj qqUU ,  is the generalized potential. 

 

 

 

 

 

8 Application of Lagrange’s formulation - Simple Pendulum 
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Fig. 1. 

Consider a simple consisting of a bob of mass m suspended to a weightless string of length l as shown in 

fig 1. Let θ be the angle of displacement then the displacement along arcOA = s is given by 

 s = lθ       (1) 

The velocity of the bob is 

 
 


 l

dt

ld

dt

ds
v       (2) 

The K. E. is then 

   22
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2

1
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Let zero be the potential energy of the system when the bob is at position B. 

The P.E. of the system when the bob is at position C is 

         cosmglcosllmgAOABmgOBmgV  1 (4) 

Hence,  

     cosmgllmVTL  1
2

1 2  

Therefore, 
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and,  
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Substituting these values in the Lagrangin equation, we get 
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dt
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 02   sinmglml   

 0  sin
l

g      (7) 

This represents the equation of motion of a simple pendulum. 

For small amplitude oscillations 

  sin  

Thus  

 0 
l

g       (8) 

This represents a simple harmonic motion of time period given by 

 
g

l
T 2       (9) 
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Origin of Quantum Theory 

1 Introduction: 

The laws of Newtonian mechanics explained successfully the motion of celestial bodies and other 

earthly objects. These laws along with the laws of thermodynamics and classical electrodynamics 

explained successfully the physical behavior and bulk properties of matter. However when the same laws 

were applied to the particles such as electrons, protons, neutrons, nucleus, etc., serious difficulties was 

encountered. It means that the classical concepts are not valid in the region of atomic dimensions. 

In microscopic world of atoms and molecules, the energy and moments were not having the same 

meaning as in the case of classica1 dynamics. On the other band, these dynamic variables had a discrete 

value in a particular state of an atom and did not undergo change in a continuous manner from one state 

to another. Thus, to include the new concepts, the Newtonian laws of macroscopic world were modified. 

This incorporation of new concepts gave rise to the birth of a new mechanics called Quantum Mechanics, 

which not only explained successfully many observed facts but also introduced revolution in our way of 

thinking. 

It is not to be taken that quantum mechanics does not concern in the macroscopic world. In reality all of 

physics is quantum physics; the laws of quantum physics are the most general laws of nature. 

2 Optical Spectra and Ritz Combination Principle: 

Any substance when raised to a high temperature or subjected to an electrical discharge emits 

light (electromagnetic waves). As a classical view the frequency of the emitted radiations must be equal 

to mechanical frequency of the electron in its orbit, and to multiples of this as overtones. Due to emission 

of energy the radius of the orbit would decrease and mechanical energy would change. Consequently the 

emitted light should have a wide range of wavelengths. This is not in agreement with the experiment 

because the radiation emitted by hydrogen atom is confined to spectral lines of well-defined frequencies 

and moreover, these frequencies are not related to one another by integral factors as overtones. 

The observed regularities among the spectral lines are expressed by a principle, first formulated by Ritz 

in 1908, known as Ritz combination principle. According to which a small set of the spectroscopic terms 

are associated with the atom of the emitting substance such that the wave-numbers means the reciprocal 

of wavelengths  /1  of various spectral lines are equal to differences between the terms, i.e., 

 2112 TT         (1) 

Neither the spectroscopic terms nor the combination principle could be explained by classical mechanics.  

3 Blackbody Radiations: 

A perfectly black-body is defined as one, which absorbs all heat radiations incident on it. 

Experimentally, such a body is represented by a hollow container with a very small aperture in the wall as 

shown in fig.1a. When a black-body is heated, it emits radiations of all types of wavelengths. These 

radiations are independent of the nature of the substance. Such heat radiations in a uniform temperature 

enclosure are known as black-body radiations. 

The origin of radiations from a heated body is the rapid vibrating particles composing the body. These 

particles are called oscillators. According to the classical electrodynamics, these oscillators emit radiant 

energy in the form of electromagnetic waves. Fig.1b. shows the variation of the intensity of radiation with 

the wavelength at different temperatures. 
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Fig 1b. Variation of intensity of radiation with  wavelength at different temperatures. 

 

From fig.1, the following conclusions can be drawn: 

(i) At a given temperature, the energy is not uniformly distributed in the radiation spectrum of a hot body. 

(ii) At a given temperature the intensity of radiations increases with increase in wavelength and at a 

particular wavelength its value is maximum. With further increase in wavelength, the intensity of heat 

radiations decreases. 

(iii) With increase in temperature m decreases, where m is the wavelength at which maximum emission 

of energy takes place. 

(iv) For all wavelengths, an increase in temperature causes an increase in the energy emission. 

 The area under each curve represents the total energy emitted for the complete spectrum at a 

particular temperature. 

Various attempts were made to construct the shape of the energy spectra as a function of wavelength. 

(a) Wien's contribution:  

Based on the classical electromagnetic theory and assuming that the oscillators from which the radiations 

are emitted are of molecular size, Wien deduced the expression, 

 
 T/b

5
e

a
E 


       (1) 

where E is energy emitted between wavelengths  and  + d and a and b are constants. 

It is found that the above equation satisfies the experimental curve in the low wavelength region but do 

not agree at high wavelength region. 

(b) Rayliegh-Jean’s contribution: 

Rayliegh and Jean applied the classical law of equipartition of energy i.e., each vibration mode has an 

average energy kT to the oscillator of black-body. 

Thus, 

 kT       (2) 

It was further shown that the number of modes of oscillation dn in the wavelength range  and  + d per 

unit volume of cavity is equal to 

 
4

d8
dn




       (3) 

The energy density in this wavelength range  and  + d equal to dn  and is also equal to Ed, i.e., 

  dndE  

where E is the corresponding energy emitted. 

On substituting the values from eq. (2) and from eq. (3) in the above equation we get 

 kTd
8

dE
4














  

 
4

kT8
E




       (4) 

From eq. (4) it follows that E is inversely proportional to the fourth power of wavelength. Thus, E 

increases with decreasing in . 
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Eq. (4) has been found to fit the experimental data at the high wavelength region but fails completely at 

the1ow wavelength region. Thus, Wien's law and Rayleigh-Jean's law based on classical assumptions do 

not precisely agree with the experimental results. 

4 Planck's Radiation Law: 

Planck deduced an intermediate expression for blackbody radiation on the basis of the following 

assumptions: 

1. A blackbody radiator contains simple harmonic oscillators of molecular dimensions, which can vibrate 

with all possible frequencies. 

2. The oscillator of the blackbody cannot have any amount of energy but has a discrete energy equal to 

the integral multiple of some minimum energy, i.e., 

  = nh      (1) 

where  is the frequency of an oscillator and n an integer. 

3. The oscillators do not radiate or absorb energy continuously. However, the oscillators can exchange 

energy with its surroundings in discrete values viz. 0, h, 2h, 3h,  ……….nh, i.e., the multiples of 

some small unit called the quantum. 

Suppose N is the total number of Planck's oscillators and E is their total energy. Then, the energy per 

oscillator is given as follows: 

 
N

E
        (2a) 

Let N0, N1, N2, ….. Nr, ..., etc. be the number of resonators having energy 0, , 2, ..., r, ..., etc. 

respectively, then we have 

 N = N0+ N1+ N2+ …..+ Nr+ ...   (2b) 

and  E = 0 + N1 + 2N2 + …..+ rNr + ....... 

or E = (N1 + 2N2 + …..+ rNr + .......)   (2c) 

According to Maxwell’s distribution formula, the number of oscillators having energy r in unit volume 

will be 

  
kT/r

0r eNN   

Therefore 

  
kT/

01 eNN   

  
kT/2

02 eNN   

  ……………. 

Using these in equations (2b) and (2c), we obtain 

  .......e.......ee1NN kT/rkT/2kT/
0

   

or    
kT/

01kT/
0

e1

N
e1NN






    (3) 

and  .......re.......e3e2eNE kT/rkT/3kT/2kT/
0

   

 
  .......re.......e3e21eNE kT/1rkT/2kT/kT/

0
   

or  
 2kT/

kT/
02kT/kT/

0

e1

eN
e1eNE








  (4) 

Substituting these in equation (2), we get 

  
1ee1

e

kT/kT/

kT/















 

 
1e

h

kT/h 





  

or 
1e

/hc
kT/hc 





     (5) 
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Thus we see that average energy of an oscillator is not kT, but given by equation (5). 

The number of resonators per unit volume in frequency range  and  + d is given by 

 
4

d8
N




  

The energy density belonging to range d can be obtained by multiplying the average energy of an 

oscillator by the number of resonators per unit volume in the wavelength range  and  + d, i.e., 

 NdE   

or 








 d
1e

1hc8
dE

kT/hc5
   (6) 

This relation is called Planck's radiation law and explains all experimentally observed facts. 

Discussion of Result: 

1. For small temperatures T is small. Therefore 1e kT/hc 
and 1 in the denominator of equation (6) can 

be neglected. 

 



 

 de
hc8

dE kT/hc

5
 

which is Wien's Law. 

2. For large temperatures T is large 

 .......
!2

1

kT

hc

kT

hc
1e

2
kT/hc 













  

Neglecting higher power terms we have 

 
kT

hc
1e kT/hc




 

Substituting it in equation (6) we get 

 






 d

1kT/hc1

1hc8
dE

5
 

 



 d

kT8
dE

4
 

This is Rayleigh-Jean's Jaw. 

These results have been verified experimentally, that is, the theoretical values thus calculated 

agree very well that given by experimental curves.  

5 Photoelectric Effect and the laws of photoelectric emission: 

Photoelectric effect is the phenomenon of ejections of electrons from a metal plate when light of a 

suitable wavelength falls on it. It is illustrated in figure 1. The electrons emitted in this process are called 

photoelectrons and the current produced due to these electrons is called photoelectric current. 

 
Fig.1. Photoelectric effect. 

 
Fig. 2.  Experimental arrangement to study photoelectric effect. 
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The experimental arrangement to study the photoelectric effect is shown in fig. 2. The metal 

plates P and C are placed in an evacuated glass bulb. The plate C is made up from a photosensitive 

material. Initially the plate C is connected to the negative terminal and the plate P is connected to the 

positive terminal of the battery through a micro ammeter. When a specific radiation of fixed frequency 

and intensity falls on C the photoelectrons are emitted. These photoelectrons, when collected by P kept at 

positive potential V with respect to plate C, produces a photoelectric current I. If the potential V is 

increased, the current I gets increased until it reaches a constant value, i.e., it approaches a saturation 

value as shown in figure 3. If the plate P is made negative with respect to C, the photoelectrons are 

repelled by P. The photoelectrons whose kinetic energy is greater than eV can reach the plate P. If the 

plate P is made more and more negative, a stage is reached at which the photoelectric current approaches 

zero value. This value of potential is called stopping potential Vs. The photoelectrons stopped by Vs have 

maximum kinetic energy. Let vmax be the maximum velocity of photoelectrons then, 

Maximum kinetic energy =  2maxvm
2

1
 

  s
2

max eVvm
2

1
      (1) 

 
Fig. 3. 

 
Fig. 4. 

For a fixed frequency, the photoelectric current increases linearly with increase in intensity of incident 

light as shown in fig. 4. The photoelectric current does not depend on frequency of the incident light.  

Laws of Photoelectric Effect: 

From the experimental facts we state the following characteristics of the photoelectric effect: 

(1) For a given photosensitive surface there is a certain minimum frequency 0 of incident radiation, 

below which there is no emission of photoelectrons. This frequency is called the threshold frequency. The 

value of threshold frequency 0 depends on the material and nature of the emitting surface. There is no 

emission if the frequency of incident radiation is less than threshold frequency. 

(2) For a given frequency ( > 0) the number of the photoelectrons emitted per second from a given 

surface is directly proportional to the intensity of incident radiation. Thus the photoelectric current is 

directly proportional to the intensity of incident radiation. 

(3) The maximum kinetic energy of the electrons is independent of the intensity of the incident radiation 

but it is proportional to the frequency of incident radiation. 

(4) The emission of photoelectrons is an instantaneous process. As soon as the radiation of frequency 

greater than the threshold frequency is incident on a given photosensitive surface, there is emission of 

photoelectrons. 

Classical theory does not give any satisfactory explanation to the photoelectric effect. Einstein 

successfully explained the photoelectric emission in 1905 on the basis of Planck's quantum theory of 

radiation. According to the quantum theory, the radiation consists of packets of energy called ‘quanta’ or 
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‘photons’ of energy h, where h is the Planck's constant and  the frequency of radiation. When a photon 

of energy h is incident upon a metal surface, its energy is used up in two ways: 

(a) A part of its energy is used up in ejecting the electron just out of the surface. The energy depends 

upon the nature of the metal and is called work function W0. 

(b) The rest part of the energy is used up in imparting kinetic energy  2maxvm
2

1
 to the ejected electron. 

Thus   2max0 vm
2

1
Wh      (2) 

But   00 Wh   

where 0 is the threshold frequency. Therefore, equation (2) becomes 

  2max0 vm
2

1
hh      (3) 

This equation is called Einstein's photoelectric equation, which successfully explains all the 

characteristics of the photoelectric effect. 

 

 

 

Q. Show how the classical theory was failed to explain the Photoelectric Effect. 

Ans. Photoelectric effect is the phenomenon of ejections of electrons from a metal surface when light of a 

suitable wavelength falls on it. The electrons emitted in this process are called photoelectrons. 

 Classical theory (electromagnetic theory) was first used to explain the photoelectric effect. 

According to this theory the electric exerts forces on the electrons and so there is emission of electrons 

from the surface. However the classical theory fails to explain the photoelectric effect in the following 

respects. 

1. Instantaneous emission of photoelectrons: According to the classical the energy transmitted by 

the light is smoothly and equally distributed through the space. Each electron would get a very small 

amount of energy of it and if this energy is not enough in comparison with the binding energy then the 

electron would accumulate the energy with time and after getting sufficient energy in few times it would 

escape from the metal surface. So the classical theory does not support to the instantaneous emission. 

2. Threshold frequency, 0: The classical theory is unable to explain why the photoelectrons are not 

emitted from the metal surface when the light radiation has a frequency less than the threshold frequency 

though the intensity is very high, whereas, the very low intensity and high frequency radiations can 

produce the photoelectrons. 

3. Proportionality of the kinetic energy of the photoelectrons with the frequency of the incident 

radiation: The classical theory expects that the kinetic energy of the photoelectrons should be 

proportional to the intensity of the incident radiation, whereas, the experimental results indicate that it is 

proportional to the frequency of the incident radiation. 

 Thus the classical theory fails to explain the photoelectric effect. 

 

 

Q. Write short note on Einstein’s explanation of Photoelectric Effect. 

Ans: Photoelectric effect is the phenomenon of ejections of electrons from a metal surface when light 

of a suitable wavelength falls on it. The electrons emitted in this process are called photoelectrons. 

 Classical theory (electromagnetic theory) was first used to explain the photoelectric effect. 

According to this theory the electric and magnetic fields associated with the light wave exerts forces on 

the electrons and so there is emission of electrons from the surface. However the classical theory fails to 

explain the photoelectric effect in all respects. 

 As the classical theory failed to explain the photoelectric effect, Einstein explained it by using the 

Plank’s quantum concept in 1905. He assumed that the energy of the light is not continuously distributed 

over the whole expanding wave front but is concentrated into the small regions in terms of packets. Each 

of these packets have energy h, where  is the frequency of the light wave and h is the plank’s constant. 

Each of these packets is called as photons. Thus when the light radiation of frequency  is incident on the 
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metal surface, the electron absorbs the energy h of the photon. Part of this energy is used by the electron 

in escaping from the metal surface and remaining appears as kinetic energy of photoelectron. If the 

photoelectron does not lose any part of this energy in collision inside the metal surface, it escapes with 

maximum kinetic energy. Thus the energy of the photon is the sum of the maximum kinetic energy of the 

photoelectron and the energy required to release the photoelectron from the metal surface. Let vmax be the 

maximum velocity of the photoelectron then we have, 

  0
2

max Wv
2

1
h       (1) 

where W0 represents the maximum energy required for the electron to release from the metal surface and 

is called as the photoelectric work function for the given metal surface. 

 Equation (1) is called Einstein’s photoelectric equitation. Clearly this equation shows that, 

As W0 is constant for a given metal surface, the kinetic energy of the photoelectron is directly 

proportional to the frequency of the incident radiation. 

If the frequency of the incident photon is gradually decreased, the kinetic energy of the photoelectron 

becomes less and less, reaching zero at a value 0 called the threshold frequency, giving 00 Wh  . Then 

the Einstein’s equation takes the form 

  00
2

max hhhv
2

1
  

 When  > 0, the kinetic energy is positive and the photoelectrons are emitted.  In case  < 0, 

kinetic energy is negative and there is no emission of the  photoelectrons. 

iii.  The velocity of the photoelectrons is independent of the intensity of radiation. By keeping  

constant, the increase in intensity of radiation would merely increase the number of photons striking the 

metal surface, which causes to increase the number of photoelectrons or the photocurrent. 

iv. There is no time lag in this process. For this phenomenon it is conceived that there  is 

collision between photon and the electron the result of the collision is always instantaneous. Hence the 

photoelectric effect is instantaneous. 

Thus each and every characteristic of the photoelectric effect receives an adequate interpretation on 

principle of quantum theory. 
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De Broglie’s Wave and Uncertainty Principle 
 

1 Inadequacy of classical mechanics 

1.1 Stability of the atom: 
Experiments of Rutherford (1910) had established that an atom consisted of a heavy positively 

charged nucleus surrounded by negatively charged electrons of very little mass. If the classical picture is 

adopted according to Earnshaw, the system will be stable only if the negatively charged electrons are kept 

revolving around the positively charged heavy nucleus in a similar manner as the planets are revolving 

around the sun. But unlike the planets, the energy of the moving electrons should decrease because the 

accelerated charged particle such as electron radiates out energy continuously in the form of 

electromagnetic waves. Therefore, due to this continuous loss of energy an orbiting electron will come 

closer and closer to the nucleus and ultimately will fall in the nucleus. This shows the instability of the 

atom i.e., it is in contradiction to the observed fact of the stability of the atom. Thus, the classical 

mechanics fails to explain the stability of the atom. 

1.2 Spectrum of the hydrogen atom: 

 The classical mechanics did not explain the spectrum of the hydrogen atom. Experimentally it was 

observed that the hydrogen spectrum consists of a discrete set of lines represented by 

 















2
2

2
1 n

1

n

1
R  

Where   is the wave number and n1 and n2 are integers such that n1 < n2.  

 According to the classical theory the excited atoms of hydrogen emit electromagnetic radiations 

of all wavelengths continually, while they are emit the radiations of certain wavelengths only. This 

difficulty was further resolved by Bohr up to some extent. 

 From the above discussion it can be concluded that the classical mechanics does not hold good in 

the region of atomic dimensions.  

2 Two slit experiment 

The experimental arrangement of two slit experiment is as shown in fig 1. The electron gun 

supplies the electrons of known velocity in the form of a fine electron beam. The velocity of the electron 

is known from the accelerating potential. The electrons emerging from the gun are allowed to pass 

through the two slits S1 and S2. The interference pattern is observed on the photographic plate film P. 

The entire apparatus is enclosed in a high vacuum chamber, so that electrons emerging from the gun 

travel to the screen without collision in the path. When the photographic film is observed with an electron 

microscope, it is observed that interference fringes are found on the film. The distribution of the intensity 

on the film is shown on the right in the figure. The formation of the interference fringes clearly indicates 

the wave nature of the electrons. 

 
Fig. 1. 

 If V is the accelerating potential given to the final accelerating anode in the electron gun then 

 K. E. = P. E. 

or eVmv
2

1 2    or eV
m2

vm 22

   or eV
m2

p2

  

or meV2p        (1) 
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According to de Broglie hypothesis, the wavelength of the electron is 

  
p

h
  

Using equation (1), we get 

 
meV2

h
       (2) 

Thus the wavelength of the electron can be obtained. 

Further when two waves interact, the principle of superposition says that the resulting wave 

function is the sum of the two individual wave functions. This phenomenon is generally described as 

interference. Here interference fringes are formed because of the electrons are behaving as waves. 

According to the two-slit experiment, the wavelength of the monochromatic light involved in the 

experiment is given by 

 
D

xL
       (3) 

Where x is the distance between two consecutive minima or maxima (fringes) on the film, D is the 

distance of the screen from the slits and L is the distance between the slits.  

 It is found that the wavelengths given by equations (2) and (3) are found to be same which 

confirms the de Broglie’s hypothesis. 

3 de Broglie’s Hypothesis: Matter Waves 

 We know that up to 1926 the matter particles were considered to be completely in nature. But in 

that year de Broglie proposed tha84t a material particle such as an electron, proton etc., might have a 

nature like just light wave. i.e., a matter can have duel nature-particle nature as well as wave nature and is 

called as de Broglie’s hypothesis. 

 A photon of light of frequency  has the momentum 

 
c

h
p


    

or 



h

p        (1) 

since      = /c 

The wavelength of a photon is, therefore, 

 
p

h
        (2) 

de Broglie considered that equation (2) is a general formula and can be applied to material particles as 

well as photons. The momentum of a particle of mass m and velocity v is 

 p = mv 

and consequently its de Broglie wavelength is  

 
mv

h
       (3) 

Equation (3) gives de Broglie wavelength of a particle having mass m moving with velocity v. If the 

velocity of the particle is comparable to the velocity of light c then the following relativistic formula for 

mass is to be used. 

 

2

2

0

c

v
1

m
m



  

where m0 is the rest mass  of the particle. 
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4 De Broglie model of the atom: 

In 1924, a French physicist named Louis de Broglie suggested that, like light, electrons could act 

as both particles and waves. De Broglie's hypothesis was soon confirmed in experiments that showed 

electron beams could be diffracted or bent as they passed through a slit much like light could. So, the 

waves produced by an electron confined in its orbit about the nucleus sets up a standing wave of specific 

wavelength, energy and frequency as shown in figure 1(a).  

 
Fig. 1(a). Wave in phase. 

 
Fig. 1(b). Wave out of phase. 

For the wave to remain continuously in phase, the circumference of the orbit should be integral multiple 

of wave length , i.e., 

 nr 2       (1) 

Where r is the radius of the orbit and n is the whole number. 

We know 

 
mv

h
  

Substituting the value of  in equation (1), we get 

 
mv

h
nr 2  

or  
2

h
nmvr        (2) 

which is the same as the Bohr’s second postulate. From equation (2), it follows that “Electron can move 

only in such orbits for which the angular momentum must be the integral multiple of h/2.” If the 

circumference is bigger or smaller than the value given by equation (2), it means that the wave is not in 

phase as shown in figure 1(b). Thus de Broglie relation provides a theoretical base for the Bohr’s second 

postulate.   

 

5 The Concept of Wave and Group Velocities: 

According to de-Broglie hypothesis a material particle in motion has a wave of wavelength 

mv

h
  associated with it, where m is the mass of the particle and v is its velocity. If E is the energy of 

the particle, then the frequency  of the wave can be specified by the quantum condition E = h, thereby 

giving  = E/h. But according to Einstein's mass energy relation E = mc2, so that 

 = mc2/h       (a) 

The de-Broglie wave velocity w is given by 

mv

h

h

mc
w

2

  

or 
v

c
w

2

       (b) 
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According to Einstein's theory relativity, the speed of light is maximum velocity that can be 

attained by a particle in nature, i.e., the velocity of material particle ‘v’ is always less than the speed of 

light ‘c’. Accordingly equation (b) implies that the de-Broglie wave velocity w must be greater than c. 

This is an unexpected result. Furthermore according to this result, the de-Broglie wave associated with 

the particle would travel faster than the particle itself, thus leaving the particle far behind. Thus it is clear 

that a material particle cannot be equivalent to a single wave train.  

The difficulty was resolved by Schrödinger by postulating that a material particle in motion is 

equivalent to a wave packet rather than a single wave. A wave packet comprises a group of waves, each 

with slightly different velocity and wavelength, with phases and amplitudes so chosen that they interfere 

constructively over only a small region of space where the particle can be located, outside of which they 

produce destructive interference so that the amplitude reduces to zero rapidly. The amplitude of one 

dimensional wave packet, in general, resembles to curve of fig. 1. Such a wave packet moves with its 

own velocity called group velocity. The individual wave forming the packet possesses an average 

velocity, called the phase velocity. It can be shown that the velocity of the material particle v is same as 

group velocity of the group of wave. 

 
Fig.1. Representation of a wave packet. 

Let us assume that the two wave-trains have the same amplitude; but slightly different frequencies and 

phase velocities such that they can be represented by the equations 

 y1 = A cos(t – kx)     (1) 

 y2 = A cos[( + d)t – (k + dk)x]   (2) 

The resultant amplitude of the wave may be obtained by 

adding (1) and (2), i.e., 

 y = y1 + y2 = A{cos(t – kx) + cos[( + d)t – (k + dk)x]} 

Using  
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cos
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cos2coscos  

we get 
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dkxtd
cos

2

xdkk2td2
cosA2y  

Since d and dk are small compared with  and k respectively, we have 

 2 + d ≈ 2  and  2k + dk ≈ 2k 

Therefore, 

    










 x

2

dk
t

2

d
coskxtcosA2y   (3) 

Equation (3) represents a wave of angular frequency  and propagation constant k that has superimposed 

upon it by a modulation of angular frequency d/2 and a propagation constant dk/2. The effect of the 

modulation is to produce successive wave groups as shown in fig.1. The wave velocity w is given by 

 w = /k      (4) 

while the velocity u of the wave group or the group velocity u is  

 u = d/dk      (5) 

The angular frequency and the propagation constant of the de Broglie waves associated with a body of 

rest mass m0 moving with velocity v are 
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  (6) 

and  
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0
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1h
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     (7) 

The wave velocity w is as we found earlier, 

 w = /k = c2/v 

which exceeds the velocity of light c. 

The group velocity u of the de Broglie waves associated with body is 

 
dv/dk

dv/d

dk

d
u





        (8) 

Differentiating equations (6) and (7) with respect to v we get 

 
2/3

2

2

0

c

v
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     (9) 

and 
2/3

2

2

0

c

v
1h

m2

dv

dk












      (10) 

Therefore, the group velocity is 

 u = v       (11) 

Thus the de Broglie wave group associated with a moving body travels with the same velocity as the 

body. 

6 Heisenberg’s Uncertainty Principle:  

It states that the product of uncertainty ∆x in determining the position of particle at some instant 

and the uncertainty ∆p in momentum of the particle at the same instant is equal to or greater than ħ( = 

h/2).  

i.e.,   

∆x∆p = ħ      (1) 

Werner Heisenberg in 1927 stated such relationship in the form of principle called 'Uncertainty Principle' 

as given by equation (1). We know that a moving body is always associated with de Broglie waves; 

further interference of these waves causes a wave group formation. This clearly suggests that there is a 

fundamental limit to the accuracy with which particle properties can be measured. If the wave group 

representing the particle is very narrow as shown in Fig 1 (a), the position of the particle is certain but the 

determination of wavelength and hence the momentum (since =h/p) becomes uncertain. On the other 

hand, if the wave group is wide as in Fig. 1 (c), accurate determination of wavelength and hence the 

momentum is possible but the position determination of particle within the wave group becomes 

uncertain.  
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The simplest example of the formation of wave groups is that the superposition of two wave trains 

slightly different in angular frequency  and propagation constant k. Consider such de Broglie waves 

with amplitude A. Let 

 1 = ACos(t-kx)     (2) 

 2 = ACos[(+∆)t-(k+∆k)x]   (3) 

The resultant wave group is then 

  = 1 + 2  

  = 2ACos(t-kx)Cos[(∆/2)t-(∆k/2)x]  (4) 

This is plotted in the Fig 2. The width of each group is evidently equal to half the wavelength m of the 

modulation. 

 
It can be suppose that this width is of the same order of magnitude as the inherent uncertainty ∆x in the 

position of the particle, that is 

 ∆x = ½(m)      (5) 

The modulation wavelength m is related to its propagation constant km by 

 m = 2/km 

From equation (4), the propagation constant km is 

 km = ∆k/2 

Therefore, 

  
2/k

2
m




  

Substituting it in equation (5), we get 

 
2/k

2

2

1
x




  

or 
k

2
x




       (6) 

The de Broglie wavelength of a particle of momentum p is 

  = h/p 

The propagation constant corresponding to this wavelength is 

 k = 2/ 

Substituting it in above equation, we get 

k = (2p)/h 

Hence an uncertainty ∆k in the propagation constant of the de Broglie waves associated with the particle 

results in an uncertainty ∆p in the particle's momentum according to the formula 

 ∆k = (2∆p)/h      (7) 

Substituting the value of ∆k in equation (6), we obtain 

 
p2

h2
x




  

or  hpx         

∆x∆p  h      (8) 

The sign  is due to the fact that wave groups may have different shapes. Thus, in equation (8), ∆x. and 

∆p are irreducible minima, which are consequences of the wave nature of moving bodies. More 

convenient form of uncertainty relation being used is 
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 ∆x∆p  ħ      (9) 

The time-energy Uncertainty Principle: 

Another form of the uncertainty principle is sometimes useful. Suppose we wish to measure the energy E 

emitted sometime during the time interval ∆t in an atomic process. If the energy is in the form of 

electromagnetic waves, the limited time available restricts the accuracy with which we can determine the 

frequency  of the waves. Since the frequency is the reciprocal of time period, the uncertainty ∆ in our 

frequency measurement is 

 ∆ = 1/(∆t)      (10) 

The corresponding energy uncertainty is 

 ∆E = h ∆ 

Using equation (10), we have 

            ∆E = h/(∆t) 

or ∆E∆t = h 

A more realistic calculation changes above equation to 

∆E∆t  ħ      (11) 

This equation states that the product of the uncertainty ∆E in an energy measurement at any instant and 

the uncertainty ∆t in the time measured at the same instant is equal to or greater than ħ. 

7 Application of uncertainty principle: Energy and radius of Bohr’s orbit 

 The energy of an electron in hydrogen atom is given by 

 
r

Ze

m

p
.E.P.E.KE

0

22

42 
    (1) 

where 

p – momentum of the electron, 

m – mass of the electron, 

Z – atomic number, 

e – charge on electron, 

0 – free space permeability, 

r – radius of the orbit. 

The uncertainty E in the total energy of the electron is then 

  
 

x

Ze

m

p
E







0

22

42 
    (2) 

where p and x are the corresponding uncertainties in the momentum and position of the electron. 

The Heisenberg’s uncertainty relation is 

  px  

or 
x

h

x
p
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Substituting it in equation (2), we get 
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The uncertainty in the energy will be minimum if 
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Differentiating equation (3) with respect x. we get 
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or 
2
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mZe
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x




      (5) 

Differentiating equation (4) with respect x. we get 
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The equation (5) is the condition for minimum energy. Therefore, the radius of the first Bohr’s  orbit 

would be 
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2

0

mZe

h
r




       (6) 

For electron to revolve in a circular orbit we must have the centrifugal force equal to the centripetal force. 

Thus 

2

0
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m
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4
  

Substituting it in the equation (1), we get the total energy of the electron in first orbit as 
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Substituting the value of r from equation (6), we get 
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       (7) 

This is the energy of the electron in the Bohr’s first orbit of the hydrogen atom. 

8 Application of uncertainty principle: Electron cannot present in the nucleus 

 The radius of typical nuclei is of the order 10-14m. If an electron to be present in the nucleus the 

uncertainty in its position must be greater than or equal to the radius of the nucleus. Therefore, the 

minimum uncertainty in its position should be 2×10-14m. Thus 

 mx 14102   

According to Heisenberg’s uncertainty principle, 

  px  
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or 
x

p





 

or sec/m.kg.
.

p 21

14

34

102755
102

100551 









  (1) 

if this is the uncertainty in the momentum of the electron then the corresponding momentum of the 

electron must be at least comparable with this magnitude, i.e., 

  sec/m.kg.p 21102755      (2) 

The kinetic energy of the electron of mass m is given by 
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p
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T
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or 
 

eV
.
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106110192

102755







  

or eV.T 71079   

or MeVT 97  

This means that if an electron to be present in the nucleus, its kinetic energy must be of the order of 97 

MeV. But experimental observations show that no electron in the atom possesses energy greater than 4 

MeV. Clearly it indicates that the electrons do not exist in the nucleus.      
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Schrodinger’s Equation 
1 Wave function ():  

 According to the de-Broglie hypothesis a particle in motion is always associated with a wave 

represented by a function . Though the wave function  itself has no physical significance, the square 

of its absolute magnitude 
2

ψ  (or * if  is a complex) evaluated at a particular time at a particular 

point is proportional to the probability of finding the particle at that time.  

Thus if  

 finitedvψ
2






    (1) 

then the particle exists somewhere in the space. 

If  

 0dvψ
2






     (2) 

then the particle does not exist in the space. 

If   

 




dvψ
2

     (3) 

then the particle exists everywhere simultaneously in the space which is not acceptable. 

 Now it is convenient to use 
2

ψ  equal to the probability p of finding the particle described by  

rather than merely be proportional to p. Thus if 

 
2

ψ = p  then 

 1dvψ
2






      (4) 

Since 1pdv 




 

It implies that the particle exists somewhere at all times. A wave function which obeys the equation (4) is 

said to be normalized wave function. It may be noted that every acceptable wave function can be 

normalized by multiplying it with an appropriate constant. In addition to the normalization the wave 

function  must be single valued, since p can have only one value at a particular place and time. Further 

the wave function  and its partial derivatives 
z

,
y

,
x 










 must be continuous everywhere. 

2 Schrödinger’s equation: Time-dependent form 

 According to de Broglie hypothesis, a particle in motion is always associated with a wave 

function , which itself is a complex quantity. Its equation can be written as 
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Aeψ       (1) 

This equation can be converted to present the particle properties as follows. 

 If  is the frequency of the wave then the angular frequency is  = 2 and also the velocity v of 

the wave is given by v = . 

Therefore, 
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Substituting it in equation (1), we get 
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 pxEt

i
-

Aeψ


       (2) 

This is the wave associated with a freely moving particle of total energy E and momentum p moving in 

the positive direction of x-axis. To obtain Schrodinger’s equation, let us differentiate twice equation (2) 

with respect x, we get 
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     (3) 

Similarly, differentiating equation (2) with respect t, we get 

 ψ
iE

t

ψ







 

or 
t

ψ
iψE




        (4) 

If the particle speed is small as compared to the speed of light, the total energy of the particle is give by 

 Total energy = K.E. + P.E. 

 E = (½)mv2 + V 

 E = (p2/2m) + V 

Multiplying by the wave function, we get 

 E = (p2/2m) + V     (5) 

Using the equations (3) and (4) in equation (5), we get 

 ψV
x

ψ

m2t

ψ
i

2

22









 
     (6) 

The equation (6) is called the time-dependent form of Schrödinger’s equation. In three it becomes

 ψVψ
zyxm2t
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or ψVψ
m2t

ψ
i 2
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     (7) 

where  
2

2

2

2

2

2
2

zyx 












  is called Laplacian operator. The potential function V is a function of 

position and time. 

3 Expectation Valves: 

By setting up a Schrödinger’s equation for a particle in a given situation all the information 

regarding the particle can be obtained by knowing the wave function (x, t) associated with it. Such a 

wave function is obtained by solving the Schrödinger’s equation. This information is in general in the 

form of probabilities and not in the form of definite figures. It is due to uncertainties in measurements. 

Therefore, in quantum mechanics the information is obtained in terms of expectation values. Suppose we 

wish to obtain the expectation value x of the position of a particle described by the wave function (x t). 
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For that, usually positions of a number of particles described by same wave function  at some instant 

are determined experimentally and then are averaged to get x. Further, considering the case of many 

particles distributed at different positions along x-axis. We find average or mean positions along x-axis of 

all particles. If N1 number of particles is at x1, N2 number of particles is at x2 and so on, then the average 

position x  in this case is similar to the centre of mass of the distribution 

 i.e. 
...................NNN

...................xNxNxN
x

321

332211




  

or 








n
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i

n

1i

ii

N

xN

x       (1) 

Quantum mechanically, this expression can be modified for a single particle, by replacing the number Ni 

of particles at xi by the probability Pi. The probability that the particle may found in an interval dx at xi 

may be given as 

 dxP
2

ii        (2) 

where i is wave function associated with the particle. Substituting (2) in (1) and taking integral between 

limits - to +  instead of the summation, we have 

 


















dx

dxx

x
2

2

      (3) 

If the wave function is normalized, then 

 1dx
2






 

Thus, equation (3) becomes  

 




 dxxx
2

      (4) 

The equation (4) is more conveniently written as 

 




 dx*xx      (5) 

where * is complex conjugate of .  

The expectation value G(x) of any quantity which is a function of the position x of a panicle and is 

described by a wave function  may be expressed as 

 




 dx)x(*GG      (6) 

The expression (6) holds even if G (x) changes with time, since  is function of time t. 

4 Operators: 

The expectation values of momentum P and energy E of a particle describing by a wave function 

 is given by 

 




 dx*pp      (1) 

 




 dx*EE      (2) 

where P and E must be functions of x and t in order to carry out integration in (1) and(2). This is required 

because  = (x, t). However, the uncertainty principle does not allow such dependence of p and E on x 
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and t, which in turn introduces an error in determination of P and E. Therefore, instead of eqns (1) and 

(2), other expressions are required to calculate expectation values of momentum and energy respectively. 

Quantum mechanically it is suggested that the expectation values of P and E may be obtained by 

differentiating the wave function representing the free particle. Now, 

 
)pxEt(

i

Ae


       (3) 

Differentiating the above equation w.r.t. x and t we get 
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and   

        Eψ
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Rearranging these equations, we get 

 ψ
x

-iψp



        (4) 

and   

   ψ
t

iψE



        (5) 

Thus the momentum P and total energy E, that are dynamical quantities, correspond to the differential 

operators namely 
x

i-



   and 

t
i



  respectively. So, denoting momentum and energy operators by  

p


 and E


 respectively, we write 

 
x

-ip



 


      (6) 

        
t

iE



 


     ` (7) 

The kinetic energy operator can be obtained as 

 
2

222

xm2m2
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     (8) 

The expectation values of momentum and energy are, then, obtained as 

 




 dxp̂*p   

or 






 dx

x
*ip       (9) 

and 




















 dx

t
i*dxˆ*E E  

or 






 dx

t
*iE       (10) 

Both equations can be evaluated for any acceptable wave function (x, t). 

 

Q: (M/A 2005) Expectation values of the momentum operator is given by 

  




 dxp̂*p . Explain why it cannot be written as 
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 dx*p̂  and  




 dxp̂*  

where p̂  is the operator. 

Ans: The momentum operator p̂  is given by 

  
x

-ip



 


 

Now considering the first case and using the operator we write 

   0*idx*
x

idx*p̂ 
















   

Since  and * are zero at x =  . 

Now consider the second case then we write, 

 










 dx

x
*idxp̂*   

which has no sense. 

 Thus the equation for the expectation values of the momentum of the particle cannot be written as 

described by the last two cases. 

5 Probability Current or Continuity equation: 
Let us consider the motion of a particle between xl and x2 in Fig. 1. Let S1 be the flux of 

probability of existence of the particle or probability current at x1 and S2 be at x2. For probability density 

represented by
2

  to be conserved, any difference between S1 and S2 must be equal to the rate at which 

the total probability  
2

1

x

x

2
dx  in the region between x1 and x2 is changing with time. i.e., 

  


 2

1

x

x

21

2
SSdx

t
     (1) 

S1 is positive as incoming and S2 is negative as outgoing. 

 
Fig. 1. 

Proof: Consider the time-dependent Schrödinger’s equation 
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     (2) 

and its complex conjugate which is obtained by replacing i by –i and  by * such  as 
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    (3) 

Multiply (2) by * from left and (3) by  from right, we obtain 
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Subtracting second from first, we get 
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Which simplifies to 
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Integrating both sides of the equation from x1 to x2, we get 
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Comparing it with equation (1), we get 
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The minus sign is required in order that the right-hand side of equation (4) is S2 – S1. 

 Now consider the wave function  as 
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. Substituting these in equation (5), we get 
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or  ψ*ψ
m

p
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since * = * 

or 
2

ψvS        (6) 

Since p/m = v, the speed of the particle. The probability current for a free particle is simply the product of 

its probability density and its speed. Equation (1) for the conservation of probability in this case can be 

written as 

  


 2

1

x

x

22
2

11
22

vvdx
t

    (7) 

This is same as the equation of conservation of mass in fluid mechanics except the probability density 
2

ψ  is in place of mass density . 

6 Schrödinger’s equation: Steady state form or Time-independent form 

 In case of problems where potential energy of a particle depends on its position only, then the 

Schrödinger’s wave equation may be simplified by removing all references to time. The Schrödinger’s 

wave equation, whose solution is a position function only, is known as steady state form of Schrödinger’s 

equation. 

 Consider the wave function (x, t) as 

 
 pxEt

i
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Aet)ψ(x,


         (1) 

Simplifying it we have 
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i
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Considering the position dependent part as 
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Then, equation (1) becomes 
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i
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Differentiating it with respect to x we get 
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Similarly differentiating it with respect to time, we get 
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The Schrödinger’s time-dependent equation is 
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   (5) 

Substituting equations (2), (3) and (4) in equation (5), we get 
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or  
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22

2




   (6) 

The equation (6) is the Schrödinger’s equation in steady state form in one dimension. In three 

dimensions, it becomes 

   0)r(ψ)r(VE
m2

)r(ψ
2

2 


   (7)  

7 Eigen values and Eigen functions: 

 In classical mechanics the total energy of a particle is given by the kinetic energy plus the 

potential energy. Thus  

  E = T + V 

Similarly, in quantum mechanics the total energy operator, called Hamiltonian operator is denoted by Ĥ , 

is given by the kinetic energy operator plus the potential energy operator. Thus, 

   V̂T̂Ĥ   

By substituting the values of the operators, we get 

 )x(V
xm2

Ĥ
2

22








    (1) 

Multiplying this equation by (x), we get 

 (x))x(V
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   (2) 

Consider the Schrödinger’s equation in steady state form 

 
 

     0xψxVE
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22

2




 

Rearranging it we get 

  
 

    0xψxV
dx

xψd

m2
xψE

2

22




  (3) 

Comparing equations (2) and (3), we have 
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 (x)E(x)Ĥ       (4) 

Equation (4) represents the Schrödinger’s equation in steady state form in terms of the Hamiltonian 

operator. However, this equation can be solved for certain values of the energy En corresponding to 

certain wave function n. therefore, the Schrödinger’s equation in steady state form can be written as  

 nn EĤ        (5) 

These energy values En are called as eigen values or characteristic values or proper values. 

Corresponding to each eigen values there is a wave function n obtained as solution of equation (5). This 

function n is referred as eigen function or characteristic function or proper function. 

8 Particle in One-Dimensional Box: Energy quantization and Wave function 

Let us imagine that the motion of a freely moving particle of mass m along x-axis is restricted in 

the region (or box) formed by walls at x = 0 and x = L. It is assumed that there is no energy loss even 

after it collides with walls of box. Thus total energy of the particle is constant within the box. It is 

obvious that in present situation, potential energy is infinite on both sides of the box, while V is constant, 

say zero inside region of the box. 

 V(x) =   for x  0 and x  L    (1a) 

V(x) = 0   for 0 < x <L    (1b) 

 

 
The motion of particle is limited to region inside the box, since the particle cannot have infinite amount 

of energy. Therefore the boundary condition for the wave function is 

 (x) = 0  for x  0 and x  L   (1c) 

Consider the steady state form of Schrödinger’s equation we have 

    0xVE
m2

dx

d
22
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    (2) 

Applying boundary condition (1b), we have 

 0
mE2

dx

d
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     (3) 

Let 
2

2 mE2
k


       (4) 

then we get 

 0k
dx

d 2

2

2




     (5) 

This is standard differential equation, which has two possible solutions 

  = Asin(kx) `      (6a) 

 =Bcos(kx)       (6b) 

Equation (6b) is not an acceptable solution, because it does not satisfy boundary condition that 

 = 0 at x = 0 and x = L, Since cos(0) = 1. To make it acceptable, it is required that B=0. However, 

equation (6a) is the acceptable solution of equation (5) because it satisfy the boundary conditions that  = 

0 at x = 0 and  = 0 at x = L, provided 

kL = n      (7) 

where n = 1, 2, 3, ……….. 
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Substituting the value of k from equation (4) in equation (7), we get 

  nL
mE2


      (8) 

Writing E as En and simplifying equation (8), we have 

 
2

222

n
mL2

n
E


       (9) 

This equation (9) implies that the energy of the particle can have only certain values, which are known as 

eigen values. These are specifically represented as En instead of E. The integer n corresponding to energy 

eigen value En is called as its quantum number. It may be also noted that the particle in box cannot have 

zero energy. This result is arisen due to fact that the wave function is finite and exist some where in box 

at all times. If the particle has zero energy then the wave function  would be zero everywhere in the 

box. 

 Substituting the value of k from equation (7) in equation (6a), we get the wave function as 

 






 
 x

L

n
ASinn      (11) 

Clearly for each quantum number n, n is a single-valued function and n and ძn/ძx are continuous. 

Further it should meet to the requirement of normalization. That is, if n is to be normalized wave 

function then 

 1dxψdxψ

L

0

2

n

2

n  




 

 1dxx
L

n
SinA

L

0

22 






 
  

 1
2

L
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Thus the normalized wave functions are 

 






 
 x

L

n
Sin

L

2
n      (13) 

where n = 1, 2, 3, ………………. 

 

 

 The normalized wave functions 1, 2, and 3 together with probability densities
2

1 , 
2

2  and 

2

3  are plotted in figure 2. While n may be positive as well as negative, 
2

n  is always positive and is 

equal to the probability p of finding the particle there. In every case 
2

n = 0 at x = 0 and x = L, the 

boundaries of the box. At a particular point in the box the probability of the particle being present may be 

very different for different quantum numbers. For instance, particle at lowest energy level of n = 1 is 
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most likely to be in the middle of the box, while a particle in the next higher state of n = 2 is never there. 

Classical physics, of course, predicts the same probability for the particle being anywhere in the box. 

9 Particle in One-Dimensional Box: Momentum quantization and Momentum wave function 

The wave function of a particle trapped in one-dimensional box of length L is given by 
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L

n
Sin

L

2
n      (1) 

where, n = 1, 2, 3, ………. 

The energy associated with the particle is given by 

2

222

n
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E


       (2) 

Here n  is called energy eigen function corresponding to energy eigen value En. As the potential energy 

of the particle inside the box is zero, equation (2) gives the kinetic energy of the particle.  

Further the momentum and energy are related by 
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m2

p
E

2
n

n     

or nn mE2p   

Using equation (2), we get 
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Thus   
L

n
pn





      (4a) 

L

n
pn





      (4b) 

Thus there can be two momentum eigen values corresponding to every energy eigen function. When the 

particle moves along +ve direction of x-axis, it has 
np  momentum and when it moves along –ve 

direction possesses 
np  momentum. The average value of the momentum is zero.  

Let us check whether the wave function given by equation (1) can work as the momentum eigen function. 

The momentum eigen equation is written as 

 nnn Pp 


      (5) 

Further the momentum operator is given by 
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d
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To check we calculate 
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Thus equation (1) is not a momentum eigen function. To obtain correct momentum eigen function, we 

use the following identity in equation (1) 
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This gives 
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and 






















x

L

in

n e
L

2

i2

1
    (8b) 

Now we calculate 
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or 
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Similarly, we get 
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Thus 
np  and 

np  given by equations (4) are the momentum eigen values corresponding to momentum 

eigen functions 
n  and 

n  given by equations (8) respectively. Clearly, the momentum eigen values 

are quantized like energy eigen values. 


